

PMS Interface C# client guide

Version 8.00

Implementing a National

Tourism Database (NTAK)
Project ID: 2017/S 249-525381

25.11.2020.

2

1. Document Control

1.1. Document data

Document Title PMS Interface C# client guide

Project Name Implementing a National Tourism Database

Author(s) Gábor Szmetankó

Responsible Person Tamás Fekete

Electronic File Name NTAK_PMS_Interface_CSharp_Client_Guide_v2.00_ENG.docx

Document Version V2.00

Number of Pages 16

Status Request for comment

3

1.2. Version history

Version Status Date Responsible

Person

Reason for change

v1.00

08/07/2019 HTA Initial version

v1.01 12/12/2019 HTA Updated sample to

deal with more strict

validation rules

V2.00 25/11/2020 HTA Update to v8

4

Contents

1. Document Control .. 2

1.1. Document data ... 2

1.2. Version history .. 3

2. Introduction .. 5

3. Microsoft .NET-based implementation example .. 6

3.1. Generate signature and authentication key-pair ... 6

3.2. Create certificate request based on the key-pair .. 7

3.3. Place key-pairs and certificates in a password-protected container 8

3.4. Create client classes for SOAP endpoints .. 9

3.5. Create a SoapFilter .. 9

3.6. Applying the authentication certificate .. 10

3.7. Applying the signing certificate ... 11

4. Frequently asked questions ... 14

4.1. The signing certificate does not contain the Digital Signature Key Usage extension,
therefore the NTAK provided certificates are invalid and cannot be used for digital
signatures. ... 14

4.2. The underlying connection was closed: Could not establish trust relationship for the
SSL/TLS secure channel. .. 15

5

2. Introduction
As part of the implementation of the National Tourism Database the Hungarian Tourism

Agency released a document called PMS Interface Description, which described the

prerequisites for integrating the NTAK system with the PMS software, the necessary

configuration for integration on the PMS side, as well as its communication channels and the

rules for data transmission.

Included in that document were code samples that were meant to provide a starting point for

implementing the integration with the NTAK system. The primary purpose of those code

examples was to guide the PMS developers through the first steps of the integration.

Unfortunately, the C# example code was used as the basis for several PMS integrations,

which lead to incorrect functionality due to the incomplete nature of the code snippets.

This document provides a more detailed introduction and guidance for the implementation of

C# based PMS product integrations. The most frequently asked questions and their answers

are also included in this document. Attached to this document is a complete Visual Studio

Solution, which helps the PMS developer to make the first steps.

It is important to note that the examples in this document are still not suitable for implementing

production grade applications. Implementing proper error handling and clean structuring of the

code is still the responsibility of the PMS developer.

6

3. Microsoft .NET-based implementation
example

As also mentioned in the introductory sections, the technical prerequisites for successful
accession to the NTAK System include, for one, the use of suitable authentication and
signature certificates during data transmission, and on the other hand, for messaging to
include the appropriate SOAP data structure. The following steps will be required to meet that
prerequisite in the case of Microsoft .NET-based implementation:

1. Generate signature and authentication key-pair (PEM)
2. Create certificate request based on the key-pair (CSR)
3. Upload certificate request to the NTAK System
4. Download certificates issued by the NTAK System (CER)
5. Place key-pairs and certificates in a password-protected container (P12)
6. Create client classes for the NTAK endpoints based on the WSDL files
7. Develop HTTPS connectivity to the NTAK endpoints using the authentication

certificate
8. Electronic signature of SOAP envelopes posted from the NTAK endpoints using the

signature certificate
9. One-way and non-decompilable transformation of guest ID details using the BCrypt

algorithm

Although providing the above steps is possible along the use of multiple components, the
following ones were used in this section:

1. BouncyCastle.NetCore component.
For generating the certificate request, and placing the certificate and key-pair in a
password-protected container

2. BCrypt.Net-Next component.
One-way and non-decompilable transformation of guest ID details

3. Microsoft.Web.Services3 component.
Electronic signature of posted SOAP envelopes

The code sections described in the following subsections provide help with the execution of
the necessary steps.

3.1. Generate signature and authentication key-pair

The 4096-bit length of the key, and the RSA algorithm used needs to be specified to generate
the key-pair consisting of private and public keys.

// Generate 4096-bit long RSA key-pair

var random = new SecureRandom();

var parameters = new KeyGenerationParameters(random, 4096);

var generator = new RsaKeyPairGenerator();

generator.Init(parameters);

var keypair = generator.GenerateKeyPair();

7

Saving the key-pair thus generated is recommended for subsequent use

FileStream file = new FileStream("reg00008.pem", FileMode.Create, FileAccess.Write,

FileShare.Read);

StreamWriter streamWriter = new StreamWriter(file);

PemWriter pemWriter = new PemWriter(streamWriter);

pemWriter.WriteObject(keypair);

streamWriter.Close();

It is important to note that the above generation of the key pair and the CSR needs to be done
twice. Once for the authentication and once for the signing certificate.

3.2. Create certificate request based on the key-pair

The Subject field on the certificate must be completed correctly to generate the certificate

string szallasRegisztraciosSzam = "reg00008";

string szallasNev = "Vadvirág Panzió";

string szallasIranyitoszam = "3325";

string szallasTelepules = "Noszvaj";

string szallashelySzolgaltatoAdoszam = "12345678";

// Generate certificate request

//

// The value of the subjectName field has to be populated with the accommodation’s details

// Common Name (CN) – The name of the Subject: The accommodation’s registration number

// Organization (O) – The name of the Organization: Accommodation name

// Organization Identifier (OrgId) – OID: 2.5.4.97 – Organisation ID: The accommodation

services provider’s tax number.

// Country (C) – Country identifier: Hungary, i.e. the ‘HU’ value is to be entered here in

every case

// Locality Name (L) – Settlement name: Accommodation settlement

// Postal Code – OID: 2.5.4.17 – Postcode: Accommodation postcode

var subjectName = $"CN={szallasRegisztraciosSzam}, O={szallasNev},

2.5.4.97={szallashelySzolgaltatoAdoszam}, 2.5.4.17={szallasIranyitoszam},

L={szallasTelepules}, C=HU";

var subject = new X509Name(subjectName);

var factory = new Asn1SignatureFactory(PkcsObjectIdentifiers.Sha512WithRsaEncryption.Id,

keypair.Private, random);

8

var request = new Pkcs10CertificationRequest(factory, subject, keypair.Public, null,

keypair.Private);

The certificate request thus created must be saved to a file and sent to the NTAK System.

FileStream file = new FileStream("reg00008.csr", FileMode.Create, FileAccess.Write,

FileShare.Read);

StreamWriter streamWriter = new StreamWriter(file);

PemWriter pemWriter = new PemWriter(streamWriter);

pemWriter.WriteObject(request);

streamWriter.Close();

3.3. Place key-pairs and certificates in a password-protected

container

Placing the certificate issued by the NTAK System and the previously generated key-pair in a
password-protected container is recommended, as are appropriate safeguards for both the
container file and the password linked to it.

// Read certificate

X509CertificateParser parser = new X509CertificateParser();

FileStream file = new FileStream("reg00008.cer", FileMode.Open, FileAccess.Read,

FileShare.Read);

X509Certificate certificate = parser.ReadCertificate(file);

file.Close();

// Read key-pair

file = new FileStream("reg00008.pem", FileMode.Open, FileAccess.Read, FileShare.Read);

StreamReader streamReader = new StreamReader(file);

PemReader pemReader = new PemReader(streamReader);

AsymmetricCipherKeyPair keypair = (AsymmetricCipherKeyPair) pemReader.ReadObject();

streamReader.Close();

// Create key container

var random = new SecureRandom();

string keyPassword = "1111";

Pkcs12Store store = new Pkcs12StoreBuilder().Build();

// Upload key container

X509CertificateEntry certificateEntry = new X509CertificateEntry(certificate);

store.SetCertificateEntry("reg00008", certificateEntry);

9

AsymmetricKeyEntry keyEntry = new AsymmetricKeyEntry(keypair.Private);

store.SetKeyEntry("reg00008", keyEntry, new X509CertificateEntry[] { certificateEntry });

// Save key container

file = new FileStream("reg00008.p12", FileMode.Create, FileAccess.Write, FileShare.Read);

store.Save(file, keyPassword.ToCharArray(), random);

file.Close();

3.4. Create client classes for SOAP endpoints

The classes and data sets that can be used to complete the SOAP envelope to be sent can
be created on the basis of the SOAP endpoints’ WSDL definition files.

wsdl.exe" /out:NTAK.cs /nologo /order /protocol:SOAP

 /namespace:NTAK /sharetypes /enableDataBinding

 esemenyvezerelt-adatkuldes.wsdl

 napi-zaras-teszt.wsdl

 napi-zaras.wsdl

 napi-zaras-utemezes.wsdl

It is possible that newer .NET framework versions do not create client classes on the basis of
the WebServicesClientProtocol class corresponding to the Microsoft.Web.Services3
component, but using the SoapHttpClientProtocol base class instead. In this case the
NTAK.cs file that was created needs to have all the

System.Web.Services.Protocols.SoapHttpClientProtocol

base classes replaced with the corresponding

Microsoft.Web.Services3.WebServicesClientProtocol

base class

3.5. Create a SoapFilter

Due to an issue in the WSE3 library, correctly issued certificates sometimes cannot be used
for signing documents. This issue only exists in applications that use the WSE3 library. In
order to sign the SOAP envelope correctly, we need to extend the default WSE3 solution with
a custom SoapFilter, which will attach the digital signature to the outgoing messages. In order
to achieve this, we first need to create a SecurityPolicyAssertion subclass.

class SigningPolicyAssertion : SecurityPolicyAssertion
{

10

 private Security security;

 public SigningPolicyAssertion(Security security)
 {
 this.security = security;
 }

 public override SoapFilter CreateClientInputFilter(FilterCreationContext context)
 {
 return null;
 }

 public override SoapFilter CreateClientOutputFilter(FilterCreationContext context)
 {
 return new ClientOutputFilter(this, security);
 }

 public override SoapFilter CreateServiceInputFilter(FilterCreationContext context)
 {
 return null;
 }

 public override SoapFilter CreateServiceOutputFilter(FilterCreationContext context)
 {
 return null;
 }
}

Then, we need to activate it in the NTAK.cs file’s constructor:

public napiZarasUtemezesPortv8Soap11()

{

 this.Url = "http://192.168.9.146:8080/ntak/v8";

 // Adding the signing policy to the client.

 Policy policy = new Policy();

 policy.Assertions.Add(new SigningPolicyAssertion(RequestSoapContext.Security));

 this.SetPolicy(policy);

}

3.6. Applying the authentication certificate

Client-side certificates should be used when the HTTPS communication channel for SOAP
endpoints is configured.

// Read authentication key

String keyPath = "reg00008-authentication.p12";

String keyPassword = "1111";

X509Certificate2 certificate = new X509Certificate2(keyPath, keyPassword);

11

// Client class structure

var client = new NTAK.napiZarasUtemezesPortv8Soap11();

client.Url = "https:// ... ";

client.ClientCertificates.Add(certificate);

3.7. Applying the signing certificate

The signing certificate must be applied to the Timestamp and Body elements in order to sign
the SOAP messages electronically. This is done by the ClientOuputFilter referenced in
SecurityPolicyAssertion.

internal class ClientOutputFilter : SoapFilter
{
 private readonly Security security;

 public ClientOutputFilter(SigningPolicyAssertion parentAssertion, Security security)
 {
 this.security = security;
 }
 public override SoapFilterResult ProcessMessage(SoapEnvelope envelope)
 {
 var actionNode = envelope.Header.GetElementsByTagName("Action",
"http://schemas.xmlsoap.org/ws/2004/08/addressing");
 var messageIdNode = envelope.Header.GetElementsByTagName("MessageID",
"http://schemas.xmlsoap.org/ws/2004/08/addressing");
 var replyToNode = envelope.Header.GetElementsByTagName("ReplyTo",
"http://schemas.xmlsoap.org/ws/2004/08/addressing");
 var toNode = envelope.Header.GetElementsByTagName("To",
"http://schemas.xmlsoap.org/ws/2004/08/addressing");
 envelope.Header.RemoveChild(actionNode.Item(0));
 envelope.Header.RemoveChild(messageIdNode.Item(0));
 envelope.Header.RemoveChild(replyToNode.Item(0));
 envelope.Header.RemoveChild(toNode.Item(0));

 // Attach an ID attribute to the Body element. This is required for the References.
 XmlAttribute idAttrib = envelope.CreateAttribute("wsu", "Id", "http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd");
 idAttrib.Value = "Body";
 envelope.Body.Attributes.Append(idAttrib);

 // Read the signing certificate
 var keyPath = "alairo.p12";
 var keyPassword = "1111";
 X509Certificate2 certificate = new X509Certificate2(keyPath, keyPassword);

 // WSSE Security element
 var token = new X509SecurityToken(certificate);
 security.Tokens.Add(token);
 security.Timestamp.TtlInSeconds = 43200;

12

 security.SerializeXml(envelope);

 // Digital signature
 var signedXml = new SignedXmlWithId(envelope);
 signedXml.SigningKey = certificate.GetRSAPrivateKey();
 signedXml.SignedInfo.SignatureMethod = SignedXml.XmlDsigRSASHA384Url;
 signedXml.SignedInfo.CanonicalizationMethod =
SignedXml.XmlDsigExcC14NTransformUrl;

 AddReference(signedXml, security.Timestamp.Id);
 AddReference(signedXml, "Body");

 KeyInfo keyInfo = new KeyInfo();
 SecurityTokenReference tokenRef = new SecurityTokenReference(token);
 keyInfo.AddClause(tokenRef);
 signedXml.KeyInfo = keyInfo;

 signedXml.ComputeSignature();
 XmlElement signedElement = signedXml.GetXml();

 // Insert the signature into the WSSE Security element of the SOAP Header
 XPathNavigator signatureNavigator = signedElement.CreateNavigator();
 XPathNavigator headerNavigator = envelope.Header.CreateNavigator();
 XmlNamespaceManager namespaceManager = new
XmlNamespaceManager(envelope.NameTable);
 namespaceManager.AddNamespace("wsse", "http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd");
 XPathNavigator secNode = headerNavigator.SelectSingleNode("wsse:Security",
namespaceManager);
 secNode.AppendChild(signatureNavigator);

 return SoapFilterResult.Continue;
 }

 private void AddReference(SignedXml signedXml, string uri)
 {
 Reference reference = new Reference();
 reference.Uri = "#" + uri;
 reference.DigestMethod = SignedXml.XmlDsigSHA384Url;
 XmlDsigExcC14NTransform env = new XmlDsigExcC14NTransform();
 reference.AddTransform(env);

 signedXml.AddReference(reference);
 }
}

The above referenced SignedXmlWithId class is the following:

// Extension of the SignedXml class in order to accept wsu:Id atrributes as identifiers.

13

internal class SignedXmlWithId : SignedXml
{
 public SignedXmlWithId(SoapEnvelope envelope) : base(envelope)
 {
 }

 public override XmlElement GetIdElement(XmlDocument document, string idValue)
 {
 XmlElement idElem = base.GetIdElement(document, idValue);

 if (idElem == null)
 {
 XmlNamespaceManager nsManager = new
XmlNamespaceManager(document.NameTable);
 nsManager.AddNamespace("wsu", "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd");

 idElem = document.SelectSingleNode("//*[@wsu:Id=\"" + idValue + "\"]",
nsManager) as XmlElement;
 }

 return idElem;
 }
}

14

4. Frequently asked questions

4.1. The signing certificate does not contain the Digital Signature Key

Usage extension, therefore the NTAK provided certificates are

invalid and cannot be used for digital signatures.

In order to understand the purpose and meaning of the KeyUsage attribute in the certificate,
we first need to look at the X.509 standard, especially the relevant section:

As can be seen above, the nonRepudiation KeyUsage value is used for digital signing. This is
the mandatory value in official signing certificates.

By looking at the definition of the digitalSignature KeyUsage value, it becomes clear that it is
mainly used in authentication scenarios. This is the reason why the NTAK provided
authentication certificates contain the digitalSignature KeyUsage value and the signing
certificates do not.

15

For further guidance, it is recommended to look at section 7.4.6 of the TLS1.2 standard
(https://tools.ietf.org/html/rfc5246#page-56) as well, which describes the requirement for a
client certificate.

The relevant section from the ETSI standard also confirms the above statements
(https://www.etsi.org/deliver/etsi_en/319400_319499/31941202/02.01.01_60/en_31941202v
020101p.pdf):

Based on the above, it can be clearly seen that the certificates provided by the NTAK system
are in conformance with the standards.

Signing issues are only caused by the incorrectly implemented WSE3 library, which requires
signing certificates to include the digitalSignature KeyUsage extension, when it would not be
necessary.

4.2. The underlying connection was closed: Could not establish trust

relationship for the SSL/TLS secure channel.

The above error message can usually be seen in the test environment. The reason for this
message is that in the test environment the NTAK system uses a self-signed certificate, which
are not trusted by default. The issue can be resolved by adding the self-signed certificate of
the NTAK server (the complete certification chain) to the Trust Store of the machine running
the PMS application. This will make the NTAK server a trusted server.

https://www.etsi.org/deliver/etsi_en/319400_319499/31941202/02.01.01_60/en_31941202v020101p.pdf
https://www.etsi.org/deliver/etsi_en/319400_319499/31941202/02.01.01_60/en_31941202v020101p.pdf

16

In case of .NET applications, we can do this by opening the Windows Certificate Manager
application. In Start/Run, enter certlm.msc and press Enter. In the Certificate Manager click
on the Trusted Root Certification Authorities group and import the NTAK certificates. The
certificate chain can be easily obtained by loading the https://pms.sgmdev.hu/ntak URL in a
browser and exporting the certificates from there.

	1. Document Control
	1.1. Document data
	1.2. Version history

	2. Introduction
	3. Microsoft .NET-based implementation example
	3.1. Generate signature and authentication key-pair
	3.2. Create certificate request based on the key-pair
	3.3. Place key-pairs and certificates in a password-protected container
	3.4. Create client classes for SOAP endpoints
	3.5. Create a SoapFilter
	3.6. Applying the authentication certificate
	3.7. Applying the signing certificate

	4. Frequently asked questions
	4.1. The signing certificate does not contain the Digital Signature Key Usage extension, therefore the NTAK provided certificates are invalid and cannot be used for digital signatures.
	4.2. The underlying connection was closed: Could not establish trust relationship for the SSL/TLS secure channel.

